多任务室内场景理解被广泛被认为是一种有趣的制定,因为不同任务的亲和力可能导致性能提高。在本文中,我们解决了联合语义,提供的新问题,提供了归因。但是,成功解析它需要模型来捕获远程依赖性,从弱对齐的数据中学习并在训练期间正确平衡子任务。为此,我们提出了一个名为Cerberus的关注建筑和定制培训框架。我们的方法有效地解决了上述挑战,并在所有三个任务上实现了最先进的表现。此外,深入分析显示了与人类认知一致的概念亲和力,这激励我们探讨弱监督学习的可能性。令人惊讶的是,Cerberus仅使用0.1%-1%的注释来实现强劲的结果。可视化进一步证实,这一成功被记入跨任务的常见注意地图。可以在https://github.com/open-air-sun/cerberus访问代码和模型。
translated by 谷歌翻译
3D场景从点云层的理解对各种机器人应用起着重要作用。遗憾的是,目前的最先进的方法使用单独的神经网络进行对象检测或房间布局估计等不同任务。这种方案具有两个限制:1)存储和运行多个网络以用于不同任务的网络对于典型的机器人平台昂贵。 2)忽略单独输出的内在结构,潜在地侵犯。为此,我们使用点云输入提出了第一变压器架构,其同时预测3D对象和布局。与估计布局关键点或边缘的现有方法不同,我们将单独参数化为一组四边形。因此,所提出的架构被称为p(oint)q(UAD)-Transformer。除了新颖的四边形表示之外,我们提出了一种量身定制的物理约束损失功能,阻碍对象布局干扰。公共基准SCANNet上的定量和定性评估表明,所提出的PQ变换器成功地共同解析了3D对象和布局,以准实时(8.91 FPS)速率运行而无需效率为导向的优化。此外,新的物理限制损失可以改善强力基线,房间布局的F1分数明显促进了37.9%至57.9%。
translated by 谷歌翻译
在自主驾驶的背景下,已知迭代线性二次调节器(ILQR)是在运动计划问题中处理非线性车辆模型的有效方法。特别是,受约束的ILQR算法在不同类型的一般限制下实现运动计划任务方面表现出了值得注意的计算效率结果。但是,受约束的ILQR方法需要在使用对数屏障函数时在第一次迭代时作为先决条件进行可行的轨迹。同样,该方法为纳入快速,高效和有效的优化方法开辟了可能性,以进一步加快优化过程,从而可以成功地满足实时实施的要求。在本文中,定义明确的运动计划问题是在非线性车辆动力学和各种约束下提出的,并利用了乘数的交替方向方法来确定利用ILQR的最佳控制动作。该方法能够在第一次迭代时规避轨迹的可行性要求。然后研究了自动驾驶汽车运动计划的说明性示例。拟议的开发实现了高度计算效率的值得注意的成就。与基于对数屏障函数的约束ILQR算法进行比较,我们提出的方法在三种驾驶场景中,平均计算时间降低了31.93%,38.52%和44.57%;与优化求解器IPOPT相比,我们提出的方法将平均计算时间降低了46.02%,53.26%和88.43%。结果,可以通过我们提出的框架实现实时计算和实施,因此它为公路驾驶任务提供了额外的安全性。
translated by 谷歌翻译
To facilitate research on text generation, this paper presents a comprehensive and unified library, TextBox 2.0, focusing on the use of pre-trained language models (PLMs). To be comprehensive, our library covers $13$ common text generation tasks and their corresponding $83$ datasets and further incorporates $45$ PLMs covering general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight PLMs. We also implement $4$ efficient training strategies and provide $4$ generation objectives for pre-training new PLMs from scratch. To be unified, we design the interfaces to support the entire research pipeline (from data loading to training and evaluation), ensuring that each step can be fulfilled in a unified way. Despite the rich functionality, it is easy to use our library, either through the friendly Python API or command line. To validate the effectiveness of our library, we conduct extensive experiments and exemplify four types of research scenarios. The project is released at the link: https://github.com/RUCAIBox/TextBox.
translated by 谷歌翻译
对于人类,使用视觉信号了解对象之间的关系是直观的。但是,对于人工智能,这项任务仍然具有挑战性。研究人员在研究语义关系检测方面取得了重大进展,例如人类对象的相互作用检测和视觉关系检测。我们将视觉关系的研究从语义到几何发展迈进了一步。在具体上,我们预测相对阻塞和相对距离关系。但是,从单个图像中检测这些关系具有挑战性。强制集中注意特定于任务的区域在成功检测这些关系方面起着关键作用。在这项工作中,(1)我们提出了一种新颖的三年级架构,作为集中注意力的基础架构。 2)我们使用广义交叉框预测任务有效地指导我们的模型专注于遮挡特定区域; 3)我们的模型在距离感知关系检测方面实现了新的最新性能。具体而言,我们的模型将F1分数从33.8%提高到38.6%,并将闭塞F1得分从34.4%提高到41.2%。我们的代码公开可用。
translated by 谷歌翻译
Virtual assistants such as Google Assistant, Alexa and Siri provide a conversational interface to a large number of services and APIs spanning multiple domains. Such systems need to support an ever-increasing number of services with possibly overlapping functionality. Furthermore, some of these services have little to no training data available. Existing public datasets for task-oriented dialogue do not sufficiently capture these challenges since they cover few domains and assume a single static ontology per domain. In this work, we introduce the the Schema-Guided Dialogue (SGD) dataset, containing over 16k multi-domain conversations spanning 16 domains. Our dataset exceeds the existing task-oriented dialogue corpora in scale, while also highlighting the challenges associated with building large-scale virtual assistants. It provides a challenging testbed for a number of tasks including language understanding, slot filling, dialogue state tracking and response generation. Along the same lines, we present a schema-guided paradigm for task-oriented dialogue, in which predictions are made over a dynamic set of intents and slots, provided as input, using their natural language descriptions. This allows a single dialogue system to easily support a large number of services and facilitates simple integration of new services without requiring additional training data. Building upon the proposed paradigm, we release a model for dialogue state tracking capable of zero-shot generalization to new APIs, while remaining competitive in the regular setting.
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译